Total No. of Questions-8]

Seat	
No.	

[5668]-203

S.E. (Information Technology) (I Semester) EXAMINATION, 2019 DIGITAL ELECTRONICS AND LOGIC DESIGN (2015 PATTERN)

: Tv	wo Hours Maximum Marks : 50
:—	(i) Answer Q. Nos. 1 or 2, 3 or 4, 5 or 6, 7 or 8.
	(ii) Neat diagrams must be drawn wherever necessary.
	(ii) Figures to the right indicate full marks.
	(iii) Assume suitable data, if necessary.
(a)	Convert the following octal number into its equivalent Binary
1. (u)	Desimal and Hovedosimal (357.3)
(b -)	Decimal and Hexadecimal $(557.5)_8$. [0]
(D)	Design and draw four bit Excess-3 adder using IC 7483.[6]
	south Or
(a)	What is Logic Family ? Explain the terms : [6]
	(i) Fan out
	(ii) Evopagation Delay.
(b)	Design Full Adder using IC 74153. [6]
3. (a)	Compare combinational circuits with sequential circuits. Convert
	JK Flip-Flop into SR flip-flop. [6]
(b)	Draw 3-bit Ring and Twisted ring counter. Draw state diagram
	for 3-bit Ring and Twisted ring counter, assuming initial state
	as 001. [7]
	: Tv : (a) (b) (a) (b) (a) (b)

Or

- 4. Design 3-bit Synchronous up counter with JK flip-flops. [6] (a)
 - (b) Design a sequence generator to generate the following sequence 10101 using JK flip-flop. [7]

P.T.O.

Download all NOTES and PAPERS at StudentSuvidha.com

5. (a) Explain the difference between CPLD and FPGA. [6]

- (b) Draw ASM chart for 2-bit binary down counter having one enable line such that : E = 1 (Counting enabled), E = 0 (Counting disabled).
 - Or
- 6. (a) Implement the following function using PLA : [6] $F_1(A, B, C) = m(0, 2, 5, 6) F_2(A, B, C) = m(1, 4, 5, 6).$
 - (b) Design and implement 3-bit gray to binary code converter using PAL. [6]
- 7. (a) State and explain any three data types supported by VHDL.[6]
 - (b) Explain he process statement in behavior model of VHDL with respect to syntax, sensitivity list and declarative part. [7]

- 8. (a) What is Structural Modeling ? Implement full Adder using Structural Modeling. [6]
 - (b) What is VHDL ? Explain entity architecture declaration for 2-bit NAND and OR gate. [7]

[5668]-203

Download all NOTES and PAPERS at StudentSuvidha.com

Or